Open Access


Read more
image01

Online Manuscript Submission


Read more
image01

Submitted Manuscript Trail


Read more
image01

Online Payment


Read more
image01

Online Subscription


Read more
image01

Email Alert



Read more
image01

Original Research Article | OPEN ACCESS

Evaluation of Ginsenoside Rg1 as a Potential Antioxidant for Preventing or Ameliorating Progression of Atherosclerosis

Gui-dong Huang, Jian Mao , Zhongwei Ji

State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, PR China;

For correspondence:-  Jian Mao   Email: maojiand417@163.com   Tel:+8651085329062

Received: 14 January 2013        Accepted: 19 October 2013        Published: 24 December 2013

Citation: Huang G, Mao J, Ji Z. Evaluation of Ginsenoside Rg1 as a Potential Antioxidant for Preventing or Ameliorating Progression of Atherosclerosis. Trop J Pharm Res 2013; 12(6):941-948 doi: 10.4314/tjpr.v12i6.12

© 2013 The authors.
This is an Open Access article that uses a funding model which does not charge readers or their institutions for access and distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0) and the Budapest Open Access Initiative (http://www.budapestopenaccessinitiative.org/read), which permit unrestricted use, distribution, and reproduction in any medium, provided the original work is properly credited..

Abstract

Purpose: To determine whether Rg1 inhibits H2O2-induced injury in human umbilical vein endothelial cells (HUVECs), an injury often regarded as a key early event in the development of atherosclerosis.
Methods: Cell viability of HUVECs treated with Rg1 and/or H2O2 was measured using 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide ( MTT) assay. Lactate dehydrogenase (LDH) release, lipid peroxidation, and reserved oxidase were detected using different available kits. The apoptosis pathway involved in the effect of Rg1 was also evaluated.
Results: Exposing HUVECs to 100 μmol/L H2O2 significantly decreased cell viability (78.12 ± 1.78 %), nitric oxide production, and nitric oxide synthase, superoxide dismutase, and glutathione activities, but markedly increased malondialdehyde content (from 26.87 ± 3.97 to 45.84 ± 3.50 nmol/mg of protein) and LDH release (from 8.63 to 31.42 %) (p < 0.05). These results were accompanied by a decrease in mitochondrial membrane potential and up-regulation of Bid and caspase-3, -8, and -9 mRNA expressions. However, pretreatment with different Rg1 concentrations (4, 8, and 16 µmol/L) markedly attenuated these changes (p < 0.05).
Conclusion: Rg1 may protect HUVECs against H2O2-induced injury via the anti-oxidative and anti-apoptosis mechanisms, which could be applied potentially for the prevention of endothelial cell dysfunctions associated with atherosclerosis.

Keywords: Ginsenoside Rg1; Human umbilical vein endothelium, Oxidative damage; Atherosclerosis

Impact Factor
Thompson Reuters (ISI): 0.523 (2021)
H-5 index (Google Scholar): 39 (2021)

Article Tools

Share this article with



Article status: Free
Fulltext in PDF
Similar articles in Google
Similar article in this Journal:

Archives

2024; 23: 
1,   2,   3,   4
2023; 22: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2022; 21: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2021; 20: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2020; 19: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2019; 18: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2018; 17: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2017; 16: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2016; 15: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2015; 14: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2014; 13: 
1,   2,   3,   4,   5,   6,   7,   8,   9,   10,   11,   12
2013; 12: 
1,   2,   3,   4,   5,   6
2012; 11: 
1,   2,   3,   4,   5,   6
2011; 10: 
1,   2,   3,   4,   5,   6
2010; 9: 
1,   2,   3,   4,   5,   6
2009; 8: 
1,   2,   3,   4,   5,   6
2008; 7: 
1,   2,   3,   4
2007; 6: 
1,   2,   3,   4
2006; 5: 
1,   2
2005; 4: 
1,   2
2004; 3: 
1
2003; 2: 
1,   2
2002; 1: 
1,   2

News Updates